S/081/61/000/013/018/028 B110/B205

AUTHORS:

Vaysberg, K. M., Zizin, V. G.

TITLE:

Spectrographic determination of vanadium and nickel in

petroleum products

PERIODICAL:

Referativnyy zhurnal. Khimiya, no. 13, 1961, 529, abstract 13M324 (Tr. Bashkirsk. n.-i. in-ta po pererabotke nefti,

1960, vyp. 4, 180 - 185)

TEXT: The weighed portion of the petroleum product was incinerated by the method of dry incineration, and the ash was dissolved in HCl. The acid was evaporated, the chlorides were dissolved in water, and the solution was boiled down to the volume required. In the solution obtained, the content of V and Ni was determined with an NCT-28 (ISP-28) tained, the content of V and Ni was determined with a three-lens spectrograph. The 0.02 mm wide slits were illuminated with a three-lens system, and the electrodes were projected onto the intermediate condenser. system, and the electrodes were projected onto the intermediate condenser. The spectrum was excited with a condensed spark obtained from an NT-3 (IG-3) generator. Titanium was used as a reference element. The results of the spectrum analysis were compared with those of the chemical and

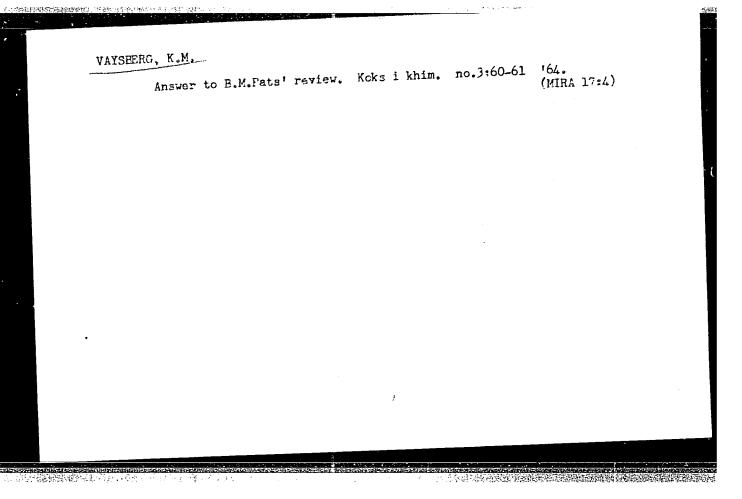
Card 1/2

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

Spectrographic determination	S/081/61/000/013/018/028 B110/B205	
colorimetric analyses. The comparison show analysis is sufficient for practical purpos Complete translation.	ed that the accuracy of es. Abstracter's note:	
+ A		
7		
Card 2/2		

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

Shabalin, I.I.; KRUGLOV, E.A.; VAYSBERG, K.M.


Spectral determination of naphthalene and its derivatives in gas oil from catalytic cracking. Knim.i tekh.topl. i masel 7 no.11:25-28 N '62. (MIRA 15:12)

(Petroleum products) (Naphthalene—Spectra)

KUIAKOV, V.N.; VARFOLOMEYEV, D.F.; BONDARENKO, M.F.; KOTOVA, V.N.;
AKHMETOV, I.G.; KOLYCHEV, V.M.; NOSAL', G.I.; KIVA, V.N.;
PANKRATOVA, M.F.; KRUGLOV, E.A.; SHMELEV, A.S.; SHABALIN, I.I.;
SHIRMUKHAMETOV, O.A.; ISYANOV, I.Ya.; RATOVSKAYA, A.A.;
VAYSBERG, K.M.

Technology of the production of naphthalene from the refining products of eastern oils. Nefteper. i neftekhim. no. 4:30-33 (MIRA 17:5)

1. Nauchno-issledovatel'skiy institut neftekhimicheskikh proizvodstv i ordena Lenina Ufimskiy neftepererabatyvayushchiy zavod.

KRUGLOV, E.A.; VAYSBERG, K.M.; ABHAMOVICH, Z.I.

Investigating the individual composition of the synthetic fatty acids of petroleum paraffins. Khim. i tekh. topl. i masel 9 no.5:36-38 5 My 64 (MIRA 17:7)

l. Nauchno-issledovatel † skiy institut neftekhimicheskikh proizvodstv.

VAYSBERG, K.M.; KRUGLOV, E.A.; KHABIBULLIN, M.F.; SHABALIN, I.I.

Using the gas-liquid chromatography method for studying the various types of haphthalene. Koks i khim. no.3:44-47 163. (MIRA 16:3) (Naphthalene) (Gas chromatography)

VAYSBERG, K.M.; SHABALIN, I.Y.; ABSTROW, Z.A.; SHEELEVA, M.A.; LETROVA, L.P.

Using gas chromatography and molecular spectroscopy in the quantitative analysis of naphthalens hydrocarbons Cho - Coo.

Khim. i tekh. topl. i massal 10 no.9:53-57 S 165. (MIRA 18:9)

1. Nauchno-issledovatel'skiy institut neftekhimicheskikh proizvodstv.

PAVLOVA, Yu.N.; VAYSHERG, L.A.

Review of the book "Problems of anesthesiology and surgery in pulmonary diseases." Probl. tub. 41 no.5:86-88 '63.

(MIRA 17:1)

VAYSBERG, L. A.; ROGACHIKOVA, T. A.

Anesthesia in surgery for laryngeal cancer. Vest. otorin. no.4: 36-39 '61. (MIRA 15:2)

1. Iz Moskovskoy gorodskoy onkologicheskoy bol'nitsy No. 62 (glavnyy khirurg-onkolog - prof. L. M. Nisnevich)

(LARYNX_CANCER) (ANESTHESIA)

SAVONICHEVA, I.P., kand. med. nauk; VAYSBERG, L.A.

Experience in the use of anesthesia with separate intubation of the main bronchi in the surgical treatment of pulmonary tuberculosis. Khirurgiia 40 no.3:98-102 Mr 164.

(MIRA 17:9)

1. Nauchno-issledovatel'skiy institut tuberkuleza (dir.- kand. med. nauk T.P. Mochalova) Ministerstva zdravookhraneniya RSFSR, Moskva.

SAVONICHEVA, I.P., kand. med. nauk; VAYSBERG, L.A.

General anesthesia in surgery for pulmonary tuberculosis. Prob. tub. no.1:36-42 '65. (MIRA 13:12)

1. Nauchno-issledovatel'skiy institut tuberkuleza (dir.- kand. med. nauk G.P. Mochalova, zamestitel' direktor po nauchnoy chasti - prof. D.D. Aseyev) Ministerstva zdravookhraneniya RSFSR, Moskva.

ACCESSION NR AM4021934

BOOK EXPLOITATION

s/

Vaysberg, Leonid Emmanuilovich

Control and organization of production in metallurgical plants (Upravleniye i organizatelya proizvodstva na metallurgicheskom zavode), Moscow, Metallurgizdat, 1963, 383 p. illus., biblio. Errata slip inserted. 3,650 copies printed.

TOPIC TAGS: industrial engineering, metallurgical plant, planning, automation, metallurgical plant administration

PURPOSE AND COVERAGE: The book considers the problems of production organization, the planning and administration of a modern metallurgical plant. The basic directions of technical progress in ferrous metallurgy, in the development of the modern metallurgical plant (combine), are pointed out. A great deal of attention is given to the problems of organizing work on the basis of combined graphs to assure progressive technical-economic indicators of shops and plants. Special chapters are devoted to the problems of the use and maintenance of equipment, powers curces, and material-technical supply of a metallurgical plant. The book is intended for engineers and technicians in ferrous metallurgy and can be useful to students in advanced courses of metallurgical higher educational institutions and departments.

Cord=1/3

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

COMPANIENCE LANGE VA	7. AN 14:1)				
	Izv MIRA				
	ectra rared				
	al s				AKCEPI PE
	uror il. trum				ene sarve
	ared a Ja '((Spec				
	infr 6-167				ALCOHOL:
	ing of 0.1:16			į	7545 175 54 Jahr 1886
	ecord iz. n pectr				renderal
	ric : geoi				
).	elec Ser Auro			***	
, L.(Photo SSSR.				*****
BERG					12732
VAY					
					TERMS
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

VAYSBERG, M. Ya.

"Evaluation of Justification and Determination of the Effectiveness of Methods of Short-Term Hydrological Forecasts," Meteorologiya i Gidrologiya, Issue No. 1, 1949.

U-1442, 28 Aug 51

VAYSEERG, N. (Sverdlovsk); VESELOV, N. (Sverdlovsk); ZINOV'YEV, Yu. (Sverdlovsk);

("The economics of the socialist chemical industry." H.M. Kalmykov, S.A.
Vnishein. Reviewed by N. Vaisberg and others) Von. ekon. no. 7:150-153 J1

156. (Chemical industries)
(Kalmykov, N.N.)
(Vaishein, S.A.)

SHIMANSKAYA, R.I.; PLYUSNIN, V.G.; VAYSBERG, N.S.

Use of pyrolysis tar from wastes of the synthetic alcohol manufacture. Khim.i tekh.topl.i masel 7 no.9:34-37 S '62. (MIRA 15:8)

1. Ural'skiy filial AN SSSR. (Petroleum products)

ZIMOV'YEV, Yu.N., kand.ekonom.mank; VAYSBERG, H.S., kand. ekon. nank
Raise the level of the training of chemical engineers
in economics. Zhur.VKHO 10 no.4:451-452 '65.

(MHA 18:11)

KURT, V.G.; VAYSBERG, O.L.

Starting regular observations of infrared coronal lines. Astron, tsirk, no.174:11-12 N '56. (MIRA 10:3)

1. Gosudarstvennyy asteonomicheskiy institut imeni P.K.Shternberga i Gornaya asteonomicheskaya stantsiya Glavnoy astronomicheskoy (Pulkovskoy) observatoriya.

(Sun--Corona) (Spectrum, Solar)

3(1)

AUTHOR:

Vaysberg, O.L.

SOY/33-35-6-13/18

TITLE:

Light Absorption in a Mixture of Negative Ions

0, H and 0

PERIODICAL:

Astronomicheskiy zhurnal, 1958, Vol 35, Nr 6, pp 931-932 (USSR)

ABSTRACT:

The author gives the distribution of light absorption in several mixtures of negative ions. The results are represented in 3 figures: It turns out that the observed interstellar light absorption can in the best way be explained by assuming negative ions of molecular oxygen with a small admixture of

negative ions of atomic hydrogen.

There are 3 figures and 5 references, 1 of which is Soviet,

1 American, 1 Canadian, and 2 are English.

ASSOCIATION: Institut fiziki atmosfery Akademii nauk SSSR (Institute of

Atmospheric Physics of the AS USSR)

SUBMITTED:

May 13, 1958

Card 1/1

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

VAYSBERG, O.L.

First observations of auroral spectra with a photoelectric spectrometer. Izv. AN SSSR. Ser. geofiz. no.8:1277-1278 Ag 160. (MIRA 13:8)

1. Akademiya nauk SSSR, Institut fiziki atmosfery.
(Auroras—Spectra)

86213

3,1810

\$/049/60/000/008/015/015 E201/E191

AUTHOR:

Vaysberg, O.L.

TITLE:

First Observations of the Auroral Spectra Obtained with

a Photoelectric Spectrometer

PERIODICAL: Izvestiya Akademii nauk SSSR, Seriya geofizicheskaya,

1960, No. 8, pp. 1277-1278

Beginning in November 1959 auroral spectra were TEXT: recorded at the "Loparskeya" station with a large-aperture photoelectric spectrometer. The optical parts of the spectrometer are shown schematically in Fig.1. A lens 1 projected the image of the aurora onto an entry slit 2. A rotatable mirror 3 and a collimator 4 directed the light onto a diffraction grating 5. The ruled area of the grating was 150 x 140 mm and it had 600 lines/mm; it concentrated light in the second order. A spherical mirror 6 produced a more observation in the second order. mirror 6 produced a monochromatic image of the entry slit in the plane of the exit slit 7. A rotatable mirror 9 allowed the use of a second slit 10. Condenser lenses 8 and 11 projected light onto photomultiplier cathodes (not shown in Fig.1). Light filters were placed in front of the entry slit to select the required

Card 1/3

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6" 86213 S/049/60/000/008/015/015 E201/E191

First Observations of the Auroral Spectra Obtained with a Photoelectric Spectrometer

The diffraction grating was rotated with an wavelengths. asynchronous motor; the scanning rate could be varied from 0.26 to 500 A/sec. Photomultipliers were of 637 -191 (FEU-19M) type. The sensitivity of the apparatus was checked by placing a phosphor loaded with radioactive carbon in front of the entry slit. amplifier was connected to the photomultiplier and the amplified signal was recorded with a potentiometer 3:1:10-09 (EPP-09). shows a spectrum of a corona-type aurora of magnitude III. spectrum of Fig.2 shows the second positive system of N_2 , the negative system of N_2^+ , the first negative system of 0_2^+ , the 0 I line at 5577 A, other O I and O II lines, as well as N I and N II lines. It was found that hydrogen emission was usually strong in diffuse uniform auroral arcs observed to the South of active aurorae or other arcs. Hydrogen emission was not observed in the absence of visible aurorae or the band of No at 4709 A (Fig.3). Card 2/3

8621 3. \$/049/60/000/008/015/015 \$201/£191

First Observations of the Auroral Spectra Obtained with a Photoelectric Spectrometer

Acknowledgements are made to <u>V.I. Krasovskiy</u> who directed this work and advised the author, to <u>Yu.I. Gal'perin</u> and <u>N.V. Dzhordzhio</u> for their advice, and to <u>V.G. Babich</u> for help in experiments.

There are 3 figures and 3 references: 2 Soviet and 1 English.

ASSOCIATION: Akademiya nauk SSSR, Institut fiziki atmosfery

(Physics of the Atmosphere Institute, AS USSR)

SUBMITTED: March 10, 1960

Card 3/3

在我们是在这里的

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

VAYSBERG, O.L.

Possible mechanism of the retardation of the earth's rotation.

Astron.zhur. 38 no.3:545-549 My-Je '61. (MIRA 14:6)

1. Institut fiziki atmosfery AN SSSR. (Earth—Rotation)

43440

S/169/62/000/011/069/077 D228/D307

3,1810

AUTHOR:

Waysberg, O.L.

TITLE:

Spectro-electrophotometry of auroral hydrogen emis-

sion

PERIODICAL:

Referativnyy zhurnal, Geofizika, no. 11, 1962, 22-23, abstract 11G148 (In collection: Polyarn. siyaniya i svecheniye nochn. neba, no. 8, M., AN SSSR, 1962,

36-42 (summary in Eng.))

TEXT: Spectrophotometric H_X -line observations carried out at loparskaya (ϕ = 63°6, Λ = 126°7) are described. Recording was conducted in several selected sky areas in order to obtain the sky hydrogen-glow distribution during an aurora, and also to determine the glow region movement. Recording was also carried out of auroral forms in the background next to these areas. Since various emissions are registered at a different time in spectral scanning, recordings were doubled for control purposes. Observations showed that hydrogen emission is, as a rule, concentrated in one, mostly southerly

Card 1/3

Spectro-electrophotometry ...

S/169/62/000/011/069/077 D**228**/D**307**

homogeneous arc. In the initial stage of an aurora this arc appeared to the south of zenith and moved southwards, when the lk-line intensity then increased. The intensity of the band (0.2) N_2 ⁺ λ 4709 Ω grew simultaneously. The arc usually reached $Z\approx75-80^{\circ}$. Then a second (and sometimes a third) are appeared and also moved southwards; no Mg is detectable in it. 10-20 minutes after the visible approach of the arcs a group of rays passed along the upper arc from west to east, then bright active forms (auroral splashes) appeared. Hβ sometimes weakened after a splash and moved northwards. Apart from southerly homogeneous arcs, no intensification of the ${\rm H}_{\rm D}$ -line as compared with background was detected in any auroral forms. A slow diminution of brightness with altitude was noted in a 'hydrogen The appearance of arcs with hydrogen emission only at large zenith distances and the failure of attempts to record such arcs at the zenith, together with the high angular spread and the slow brightness diminution in a 'hydrogen arc', lead to the supposition that a 'hydrogen arc' stems from a projection effect or from the Van Rein effect. The visible hydrogen field section is governed by the superposition of the altitudinal and the latitudinal glow dis-Card 2/3

S/169/62/000/011/069/077 D228/D307

Spectro-electrophotometry ...

tribution. The ${\rm H}_{\mathcal B}$ -line was not once observed in the absence of visible glow, nor when the glow was sometimes very weak. Cases of diffuse hydrogen-emission glow were noted, too, over much of the sky to the north of zenith. The ratio of I_{Hg}/I_{4709} g may reach 1.5

in hydrogen fields and is much less than 1 in all auroral forms. No detailed relation between the appearance of hydrogen emission and the variation of the magnetic field's H-component was detected. Hydrogen emission was absent on magnetically quiet days; bright hydrogen fields appear on nights with magnetic storms and intense auroras. Negative coils are connected with the southwards movement of the hydrogen field.

Abstracter's note: Complete translation_7

Card 3/3

6. 加斯斯斯基基

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

43641

|S/169/62/000/011/070/077 |D228/D307

3,18/0 AUTHOR:

Vaysberg, O.L.

TITLE:

Spectro-electrophotometry of N2, N2+, OI, and NII

emission in auroras

PERIODICAL:

Referativnyy zhurnal, Geofizika, no. 11, 1962, 23, abstract 11G149 (In collection: Polyarm. siyaniya i svecheniye nochm. neba, no. 8, M., AN SSSR, 1962,

43-49 (summary in Eng.))

TEXT: Results are given for the photoelectric recording of several auroral spectra in the regions λ 3100-5600 R and λ 6000-9500 R. Besides the molecular band systems; the equipment's sensitivity allowed seven atomic lines to be recorded: λ 5577 R [OI], the doublet λ 6300-6364 R [OI], λ 8446 R [OI], λ 5200 R [NI], λ 5003 R [NII], and the hydrogen lines H $_{\alpha}$ and H $_{\beta}$. In auroral spectra it is hard to detect a sharp functional relation between any two emissions, for example the height dependence. The instrument's sighting beam usually intersects not one auroral form but a whole series of them -- Card 1/4

S/169/62/000/011/070/077 D228/D307

Spectro-electrophotometry ...

(luminant layers at different heights). Therefore it is necessary to seek a tendency rather than a rigid relation. Observations showed that within the method's precision there is a constant intensity ratio between all nitrogen molecular band systems and the green line. No systematic difference in the ratio $I_{\rm INGN_2^+}$ + I/χ_{5577} 9 in

the upper and lower parts of radiant forms was detected. The second positive N₂ system correlates well with the first negative N₂+ system. The first positive N₂ system is more intense if the auroral brightness is low. The intensity of the infrared Meynel N₂+ system correlates well with the green line. In hydrogen fields the ratio of the intensity of bands of the Meynel N₂+ system to the green line is 1.8 times less than in auroral forms with no hydrogen emission. It was established that in the laboratory proton-beam excitation of nitrogen molecules the Meynel system is excited 10 times less effectively relative to the first positive N₂ system than in electron bombardment. Evidently, much of the glow in hydrogen fields is induced by encroaching proton flux. According to observational data no differences were also found in the relative intensities of molecular band systems and the green line in radiant and Gard 2/4

S/169/62/000/011/070/077 D228/D307

Spectro-electrophotometry ...

homogeneous forms of the same brightness. The resolved oxygen line λ 8446 % behaves in auroras like the forbidden line λ 6300 % (its intensity lags behind the growth in the intensity of the green line, which can be taken as a measure of auroral brightness). The non-linear dependence of the intensity of λ 8466 % on λ 5577 % and the different nature of its behavior in individual cases testify to the existence of two excitation mechanisms for the line λ 8446 %. It may be supposed that in bright low auroras λ 8446 % is excited by electron impact with a quite definite I₈₄₄₆ % /I₅₅₇₇ % intensity ratio. An additional secondary mechanism must act at great heights. The line λ 8446 % behaves differently in a hydrogen field. Here we see an almost linear relation between the intensities of the lines λ 8446 % and λ 5577 %. This also speaks in favor of the fact that so-called "hydrogen arcs" are an effect of geometric projection. On the approach of a hydrogen field towards the horizon the instrument's sighting beam passes a very thick luminant layer, the brightness of emissions grows, and their ratio remains unchanged. This is actually observed for all emissions apart from λ 6300 %, whose intensity may also increase sometimes in hydrogen fields. There are Gard 3/4

Spectro-electrophotometry ...

S/169/62/000/011/070/077 D228/D307

grounds for supposing that electron excitation also exists in hydrogen fields. The line λ 5003 \Re [NII] is on the average relatively more intense in hydrogen fields as compared with other auroral forms. Abstracter's note: Complete translation 7

Card 4/4

li5202 3/269/63/000/001/02**3/0**32 A001/A101

3.7872

Vaysberg, O. L.

TITLE:

Spectroelectrophotometry of hydrogen emission in auroras

PERIODICAL:

Referativnyy zhurnal, Astronomiya, no. 1, 1963, 67, abstract 1.51.458 (In collection: "Polyarn. siyaniya i svecheniye noch. neba. no. 8", M., AN SSSR, 1962, 36 - 42, English summary)

TEXT: Observations of the HA line were conducted at Loparskaya in 1959 - 1960. It has been established that its emission is not related to auroral shape. The HA emission is concentrated in the hydrogen field extended along the geomagnetic parallel. The field extension in latitude amounts to 150 - 1000 km. With aurora development, the field is shifted southward. Owing to the effect of Van Rine, auroras have the shape of a uniform arc in observations at large zenith distances. Appearance of a hydrogen field precedes a bright aurora. HA profiles agree with profiles obtained by other authors. No variations were detected in the HA profile. There are 14 references.

T. Mulyarchik

[Abstracter's note: Complete translation]

Card 1/1

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

45203 8/269/63/000/001/024/032 A001/A101

AUTHOR:

Vaysberg, O. L.

TITLE:

The spectroelectrophotometry of emissions N2, N2, O I and N II in

auroras

PERIODICAL:

Referativnyy zhurnal, Astronomiya, no. 1, 1963, 67 - 68, abstract 1.51.459 (In collection: "Polyarm, siyaniya i svecheniye nochn. neba. no. 8", M., AN SSSR, 1962, 43 - 49, English susmary)

TEXT: In 1959 - 1960 spectra of nurcras in the regions λ 3100 - 5600 and λ 6000 - 9500 were photoelectrically recorded at Loparskaya. A number of emissions was studied in the mentioned regions. No large difference in behavior of these emissions in different forms of auroras was discovered. The Meynel system My was an exception. In comparison with other emissions in hydrogen fields it was 1.8 times weaker than in other forms of auroras. The intensity ratio λ 6300/ λ 5577 dropped with the growth of intensity of λ 5577. The same regularity was observed also in λ 8446. Intensities of bands 2PGN₂ and 1NGN[†] are well correlated with the green line. The 1PGN, bands in weak auroras are excited relatively stronger.

Card 1/2

The spectroelectrophotometry of	4/269/63/000/001/024/032 A001/A101
There are 7 references.	
	T. Mulyarchik
[Abstracter's note: Complete translation]	
1	
Card 2/2	

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001859120018-6

L 1547-66 FSS-2/ENT(1)/FS(v)-3 TT/GS/GW

ACCESSION NR: AT5023583

UR/0000/65/000/000/0203/0205

AUTHOR: Vaysberg, O. L.; Shuyskaya, P. K.

TITLE: Anomaly in the pitch distribution of electrons

SOURCE: Vsesovuznava konferentsiva po fizike bosmicheskogo prostranstva. Moscov, 1965. Issledovaniya kosmicheskogo prostranstva (Space research); trudy konferentsii. Moscow. Izd-vo Nauka, 1965, 203-205

TOPIC TAGS: electron distribution, atmospheric interaction, upper atmosphere, space flight, space probe

ABSTRACT: Fitch distributions of electrons were obtained by means of charged-particle indicators installed on board the Kosmos-5 satellite. Wide pitch distributions were observed in the range of longitudes to the west of the South Atlantic anomaly. Narrowing of pitch distributions occurred at $\lambda \gtrsim 0^\circ$ up to $\lambda \gtrsim 20^\circ$, with greatest narrowing in the range of longitudes from +20 to +60°. The narrowing of the pitch distributions occurred at the exit from the anomaly, and the corresponding decrease in intensities observed in this region took place at heights >600 km, which makes it impossible to explain the effect only by scattering in the atmosphere. The cifect was attributed at least partially to the presence of electric fields in the mag-

Card 1/2

	L 1547-66	and the second property of the second propert	· · · · · · · · · · · · · · · · · · ·			
	ACCESSION NR: AT5023583					
	netosphere. Electromotive forces due to high conductivity along the geomagnetic force lines should penetrate the region of capture and distort the drift of particles of not very high energy. The systematic change of the width of pitch distribution of electrons with an energy of ~100 kev could be caused by an electric field with an intensity of the order of 10 ⁻⁵ v·cm ⁻¹ . A change in the energy of these electrons would also occur. Orig. art. has: 2 figures and 1 table. [JA]					
	ASSOCIATION: none					
	SUBMITTED: 02Sep65	Encl: 00		SUB CODE:	ES, NP	
	NO REF SOV: 004	OTHER: 007		ATD PRESS	:4044	
					-	
٠.						

I	3107-66 FSS-2/EWT(1)/FS(v)-3/FCC/ EWA(d)/EWA(h) TT/GS/GW UR/0000/05/000/0406/0417	
		į
	ACCESSION NR: AT5023611 AUTHOR: Bolyunova, A. D.; Vaysberg, O. L.; Gal'perin, Yu. I.; Potapov, B. P.; 67	I
	AUTHOR: Bolyunova, It. Temnyy, V. V.; Shuyskaya, F. K. Title: Preliminary results of particle studies using the "Elektron-1" satellite Title: Preliminary results of particle studies using the "Elektron-1" satellite	
	TITLE: Preliminary results of particle to be being being best of particle to be being best of the best of	
	TITLE: Preliminary results of particles SOURCE: Vsesoyuznaya konferentsiya po fizike kosmicheskogo prostranstva. Moscow, SOURCE: Vsesoyuznaya konferentsiya po fizike kosmicheskogo prostranstva (Space research); trudy konferentsii. 1965. Issledovaniya kosmicheskogo prostranstva (Space research); trudy konferentsii.	
_	11965, 1881edovanity	
	Moscow, Izd-vo Nauka, 1965, 400-417 Moscow, Izd-vo Nauka, 1965, 400-417 TOPIC TAGS: particle physics, artificial earth satellite, satellite data analysis,	
	lelectron, proton	
	electron, proton ABSTRACT: The authors analyze data from the "Elektron-1" to determine the distribu- ABSTRACT: The authors analyze data from the "Elektron-1" to determine the distribu- ABSTRACT: The authors analyze data from the "Elektron-1" to determine the distribu- ABSTRACT: The authors analyze data from the "Elektron-1" to determine the distribu- ABSTRACT: The authors analyze data from the "Elektron-1" to determine the distribu- ABSTRACT: The authors analyze data from the "Elektron-1" to determine the distribu- ABSTRACT: The authors analyze data from the "Elektron-1" to determine the distribu- ABSTRACT: The authors analyze data from the "Elektron-1" to determine the distribu- Lower latitudes ($L < 2$) close to the equator, the dominating the distribution of radiation at lower latitudes ($L < 2$) close to the equator, the dominating the distribution of radiation at lower latitudes ($L < 2$) close to the equator, the dominating the distribution of radiation at lower latitudes ($L < 2$) close to the equator, the dominating the distribution at lower latitudes ($L < 2$) close to the equator.	
	tion of radiation and have and at	
	harticle riux is itom otag.om 2.sec and irom electron electron mey	
	particle flux is from electrons of interest from electrons artificially particle flux is from electrons of intensity of up to 2·10 ⁹ particles·cm ⁻² ·sec ⁻¹ , and from electrons artificially linearly of up to 2·10 ⁹ particles·cm ⁻² ·sec ⁻¹ . There are also trapped protons in and a flux of up to 2·10 ⁸ particles·cm ⁻² ·sec ⁻¹ .	
	and a flux of up to 2.10° particles.cm	
		3
	Card 1/2	
12		

L 3107-66

AT5023611 ACCESSION NR:

this same region with energies of tens and hundreds of Mev and an intensity of up to $\sim 5 \cdot 10^4$ particles cm⁻²·sec⁻¹ (E > 50 Mev). At middle latitudes (2 < L < 4) there is a sharp increase in the flux of soft protons with energies of a few hundred kev to intensities of no less than 108 particles cm⁻² sec⁻¹ at latitudes of 30-50° and apparently to no less than $\sim 3\cdot 10^8$ close to the plane of the equator at $L\sim 3$. Their spectrum is softer at higher latitudes. Both protons and electrons are observed at higher latitudes, the low energy electron component (E > 20 kev) being extremely variable, especially during increased geomagnetic activity. The boundary of the capture zone in the geomagnetic field during magnetic calm matches the outlines of the "momentary" polar aurora zone which reflects the diurnal asymmetry of the magnetosphere. "In conclusion, we are sincerely grateful to V. I. Krasovskiy, T. M. Mulyarchik, N. V. Dzhordzhio, M. L. Bragin, G. N. Zlotin, I. N. Kiknadze, I. D. Dmitriyeva, T. N. Zaglyadimova, A. K. Nazarova and G. A. Bordovskiy for great assistance in the work and for useful discussions." Orig. art. has: 8 figures and 1 table.

ASSOCIATION: none

SUBMITTED: 02Sep65

00 ENCL:

SUB CODE: ES, NP

NO REF SOV

800 OTHER:

APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001859120018-6"

ACC NR: AP6000306	SOURCE CODE:	UR/0293/65/003/006/0890/09C2	
UTHOR: Vaysberg, O. L.;	Shuyskaya, P. K.	16 B	
RG: none			
TTLE: Distribution of eased on data of "Cosmos-	lectrons with B > 40 kev by pi	itch angles in the inner belt,	The state of the s
OURCE: Kosmicheskiye is	sledovaniya, v. 3, no. 6, 1965	, 890-902	
OPIC TAGS: satellite da			
ABSTRACT: In June 1962 ob of "Compos 5" on the distri y pitch angles at altitudirected intensity in mir reserving the magnetic m	servers succeeded in obtaining data bution of directed intensity of des of 1,000—1,600 km. Distri- ror points on natural geomagne- coment. The width of pitch dis-	over several critical revolutions of electrons with energy > 40 is ibutions were plotted of the tic coordinates B and L while tributions and the correspond-	
tability, electron distract. In June 1962 obtain "Commos 5" on the district of the pitch angles at altitudirected intensity in mix reserving the magnetic ming: B and L diagrams should be be a barration point). On the ributions are in agreement of the force line, which	servers succeeded in obtaining data bution of directed intensity of des of 1,000—1,600 km. Distri- ror points on natural geomagne	over several criffel revolutions of electrons with energy > 40 ke ibutions were plotted of the tic coordinates B and L while tributions and the correspondor on the local time of the sities computed by pitch distensities at an angle of 90° as through the same drift	

E 8118-66

ACC NRI AP6000306

0

on the drift trajectories running in the region of the South-Atlantic anomaly at an altitude of 250 km reaches 2.106 electron/cm2.sec.strad for L = 1.5. The width of the pitch distribution remains large in the zone of the South-Atlantic anomaly and thereafter. At longitudes > 0° during the daytime the pitch distributions contract, and the intensity along the drift trajectories decreases correspondingly. This phenomenon evidently, cannot be entirely the result of Coulomb scattering. The variations observed in pitch distributions and intensities, their changes in individual orbiting revolutions, and the systematic decrease of pitch distributions and intensity at longitudes > 0° are a weighty argument in support of the existence in the magnetosphere of electric fields of ionospheric origin with a strength of up to 10-4-10-5 v/cm. At present, additional analysis of the available material is being conducted in order to evaluate the effect of diurnal and longitudinal factors on the pitch distribution of trapped particles. There are reasons to assume that the measurement of the variations of intensity and pitch angles of soft electrons, which play an important role in the excitation of auroras and in the energy balance of the upper atmosphere, may serve also as an effective means for the study of electric fields and circulation in the upper atmosphere and magnetosphere of the Earth. Orig. art. has: 5 formulas and 9 figures.

SUB CODE: AA, SV/ SUBM DATE: 27Feb65/ ORIG REF: 008/ OTH REF: 013/ ATD PRESS:

414

Card 2/2

JD/GW IJP(c)

EWT(1)/EWT(m)/FCC/EWP(t)/EWP(b) SOURCE CODE: UR/0203/66/006/001/0135/0137

14499-66 AP6006668 ACC NR:

ORG: Institute of Physics of the Atmosphere, AN SSSR (Institut fiziki atmosfery AUTHOR:

AN SSSR)

TITLE: On the pitch distribution of protons in auroras 12

SOURCE: Geomagnetizm i aeronomiya, v. 6, no. 1, 1966, 135-137

TOPIC TAGS: proton, aurora, angular distribution, radiation intensity, hydrogen

emission, geomagnetic force line

ABSTRACT: It is assumed that some protons penetrate into auroras at low velocities. A detailed analysis of line profiles proved that at velocities of some hundreds of km/sec, the differential energy spectrum of particles changes according to the law $E_0-1.8$, where E_0 is the initial energy of protons. The angular distribution of protons depends upon the profile accepted. The variability of results obtained using different profiles indicates that the proton distribution in auroras cannot be studied by the methods used for studying hydrogen. 1 Formulas are given for determining dependence of radiation intensity upon wavelength or

Card 1/2

UDC: 550.388.8

L 14499-66

ACC NR: AP6006668

Doppler velocity. The radiation intensity was taken from auroral spectra obtained at Loparskaya station. Hydrogen emission was obtained from an auroral belt 100—1000 km wide along a geomagnetic parallel. Integrating the formula of Doppler velocity, the number of hydrogen atoms which were decelerated in the atmosphere was found. Assuming similar deceleration for protons, the differential energy spectrum of penetrating protons can be determined. The spectrum determined by integration differs from that based on the independence of angular distribution of the energy spectrum. The capture of protons by geomagnetic force lines is possible when the proton direction of motion coincides with the force lines. Orig. art. has: 2 figures and 4 formulas.

SUB CODE: 04/ SUBM DATE: 07May65/ ORIG REF: 005/ OTH REF: 012/ ATD PRESS: 4/99

000

版Card 2/2

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001859120018-6

L 16987-66 EWT(1)/FCC GW

ACC NR: AP6001540 (N) SOURCE CODE: UR/0384/65/000/006/0024/0030

AUTHOR: Vaysberg, O. L. (Candidate of physico-mathematical sciences)

ORG: none

E

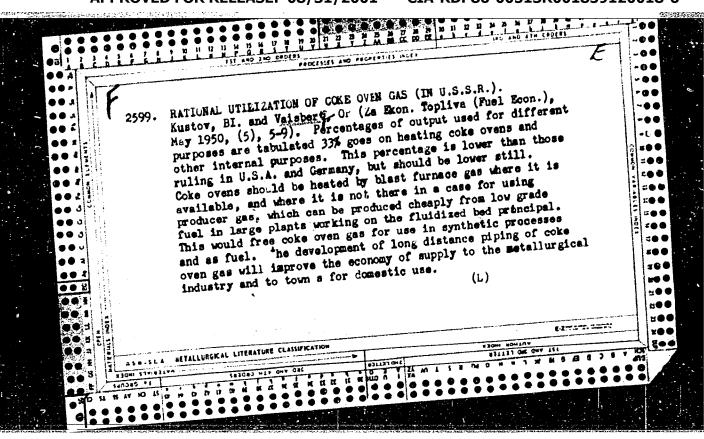
TITLE: The aurora

SOURCE: Zemlya i Vselennaya, no. 6, 1965, 24-30

TOPIC TAGS: aurora, magnetic storm, sunspot, geomagnetic field, ionosphere

ABSTRACT: This is a popular report on the occurrence of the aurora, its variety, its beauty and awesomeness, and the attention now being devoted to it, especially in regard to photographic records. Current knowledge of the aurora is reviewed: its association with magnetic storms and its possible relation to sunspots; the theory that the aurora is caused by a stream of charged particles from the sun following a complex path through the geomagnetic field; the occurrence of most auroral displays at heights of 95--120 km (though some have been observed at 80 km) with rays extending to 200-300 km and even, rarely, to 1000 km; the character of the auroral spectrum, consisting of bands of molecular nitrogen and oxygen and lines of atomic nitrogen and oxygen, indicating that the aurora is not due to

Card 1/2

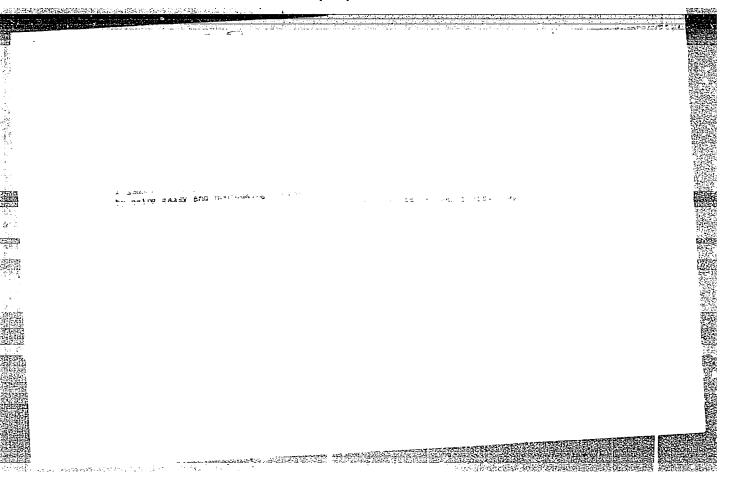

~

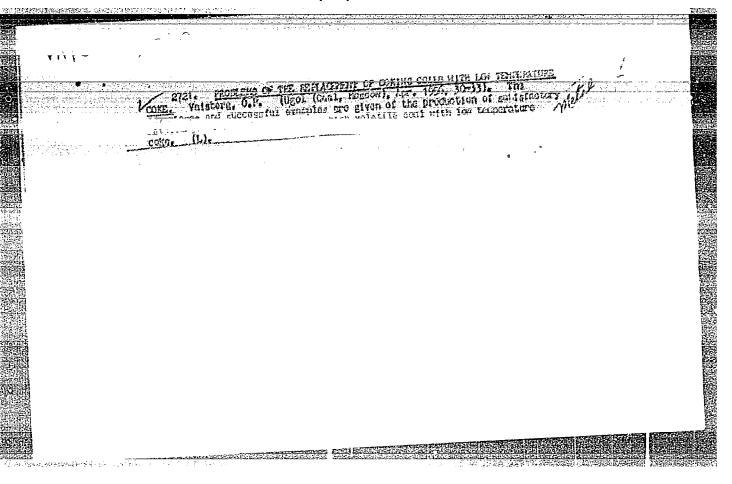
L 16987-66 ACC NR: AP6001540

electrical discharge in the atmosphere; lines of incandescent hydrogen and the red shift of these lines; and invasion of the atmosphere by low-energy electrons (about 10 kev), raising the temperature. The types of auroral displays are examined briefly. Those due to low-energy electrons as well as proton-generated types are dominant in polar regions. The "red arcs" of the middle and low latitudes are due to excitation luminescence of the electrical field in the ionosphere or to photochemical excitation. The author points out that we still have much to learn about this phenomenon. Orig. art. has: 9 figures.

SUB CODE: C4/ SUBM DATE: none

Card 2/2 7/195


CIA-RDP86-00513R001859120018-6 "APPROVED FOR RELEASE: 08/31/2001


- VAYSBERG, O. P.
- USSR (600)

是的包括图制器。因为自由开心

- Coal Preparation
- Optimum depth of concentrating Kizel coking coals. Ugol' 27, no. 12, 1952.

9. Monthly List of dussian Accessions, Library of Congress, March 1953. Unclassified.

VATSBERG, O.P. kandidat ekonomicheskikh nauk.

On replacing coking ceal by semi-ceke. Ugel' 31 ne.4:30-33 Ap '56.
(MLRA 9:7)

1.Ukrainskiy uglekhimicheskiy institut.
(Ceke)

VAUS beau, D.P

AUTHORS: Litvinenko, M.S. (Dr. of Tech.Sc.), and Vaysberg, 0.P., (Cand. Economic Sc.)

TITLE: Economics of the removal of sulphur from coke oven gas on the Southern Coke Oven Works. (Ekonomika izvlecheniya sery iz koksovogo gaza na koksokhimicheskikh zavodakh yuga).

PERIODICAL: "Koks i Khimiya" (Coke and Chemistry), 1957, No.5, pp.47-50 (U.S.S.R.).

ABSTRACT: The extent of the application of gas cleaning on Southern Works during 51-56 is shown in Table 1. Methods of utilising sulphur recovered from the gas are briefly discussed. It is concluded that the production of sulphuric acid which can be used on the spot is the most economical. Technicaleconomical indices of the production of sulphuric acid from pyrites and from hydrogen sulphide recovered from coke oven gas are compared in Table 2. Two methods of gas desulphurisation are compared - arsenate-soda and vacuo-carbonate. The volumes of constructional work involved for the above two methods of desulphurisation are compared in Table 3. The plant operating on the vacuo-carbonate method is chearer and simpler to build. The degree of desulphurisation of gas attained in 1956 on various Ukrainian works is compared, in Table 4, and from this it is concluded that both methods card 1/3

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

Economics of the removal of sulphur from coke oven gas on the Southern Coke Oven Works. (Cont.) 68-5-11/14 are comparable in the efficiency of desulphurisation, but the arsenate method presents difficulties due to a large volume (100m3/day) of highly poisonous effluent and high soda consumption (400-500 kg/ton of sulphur). The costs

of gas desulphurisation by the above two methods on various works calculated on the same basis for 1955 were as follows:

Method of kopeks Works roubles Cleaning 68 0 arsenate-soda 00 Zaporozsk 2 n 11 71 Zhdanov 3 90 Dnepropetrovsk vacuo-soda

High cleaning costs on the Makeyevsk Works were due to high power consumption. In 1956 the works replaced soda by potash which resulted in a considerable economy (30-35%) in potash which resulted in a considerable economy (30-35%) in power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption. The cost of cleaning power, steam and water consumption in 1955 to 1'.75 Roubles in 1956.

card 2/3

Economics of the removal of sulphur from coke oven gas on the Southern Coke Oven Works. (Cont.) 68-5-11/14

regeneration of the absorbing solution, e.g., by utilising heat of ammonia liquor, as was done on the Kharkov works, a further decrease in cleaning costs can be obtained. A comparison of manpower required for cleaning gas by the above two methods (Table 5) indicates that the vacuocarbonate method in this respect is also more economical. On the basis of the above comparisons it is recommended that the vacuo-carbonate method of desulphurisation totat the vacuo-carbonate method of desulphurisation together with the production of sulphuric acid by wet catalysis, should be widely applied in the coking industry of the U.S.S.R., while the construction of new plants based on the arsenate-soda method should be discontinued.

There are 5 tables and 3 Slavic references.

ASSOCIATION: UKhIN.

AVAILABLE:

card 3/3

VAYSBERG, O.P.

TITLE:

68-12-21/25

AUTHOR: Pozin, B.M.

On the Problem of the Economy of Purification of Coke Oven Gas from Hydrogen Sulphide (K voprosu ob ekonomike ochistki

koksovogo gaza ot serovodoroda)

PERIODICAL: Koks i Khimiya, 1957, No.12, pp. 49 - 50 (USSR)

This is a criticism of the paper by M.S. Litvinenko and O.P. Vaysberg (Koks i Khimiya, 1957, No.5). The present author criticises costs calculation used in the original paper and concludes that the matter of economy of vacuum carbonate and ABSTRACT: arsenical methods of gas purification should be widely discussed in the journal, Koks i Khimiya, so that objective conclusions can be reached.

ASSOCIATION: Giprogazoochistka

Library of Congress AVAILABLE:

Card 1/1

AUTHOR: Vaysberg, O. D.

68-58-6-12/21

TITLE:

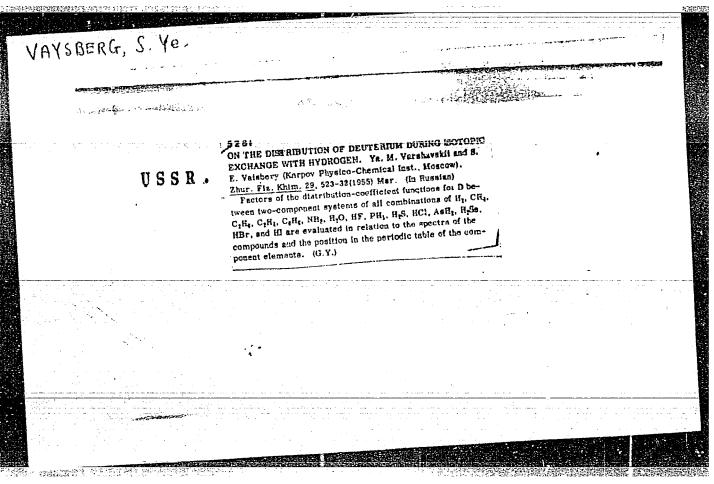
On the Economy of Flotation of Coal Slurry and Dust (Ob ekonomike flotatsii ugol'nogo shlama i pyli)

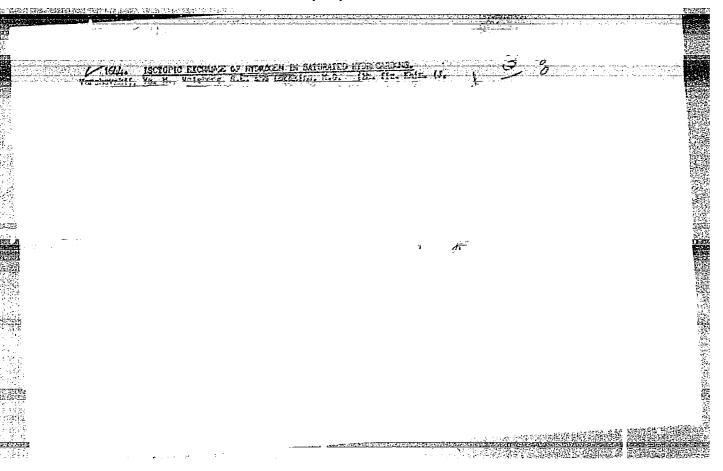
PERIODICAL: Koks i Khimiya, 1958, Nr 6, pp 49-51 (USSR)

ABSTRACT: This is a contribution to a previous paper under the same title by P. Ye. Sekt, F. F. Teslenko, F. M. Belikov and S. A. Levin, published in Koks i Khimiya, Nr 8, 1957,

The present author considers that the

investigations described in the original paper are insufficient for the determination of the economical effect of flotation of all coal fines on coal washeries


at coke oven works.


ASSOCIATION: UKhIN

1. Coal--Processing 2. Coal--Flotation

Card 1/1

हुन अभीक्षाकी	AYSBERG.P. Offices of design koop. no.6:55-58	00 JJ+				
	1. Nachal nik Tekhnicheskoy i konstruktorskoy kontory Mosoblpromso-					
	veta	(Effi	ciency, Industr	cial)		

VAUSBERG, S.E.

USSR/ Chemistry - Physical chemistry

Card 1/2

Pub. 22 - 25/50

Authors

* Varshavskiy, Ya. M., and Vaysberg, S. E.

Title

Managara M 8 About rules governing the equilibrium distribution of deuterium

during isotopic hydrogen interchange reactions

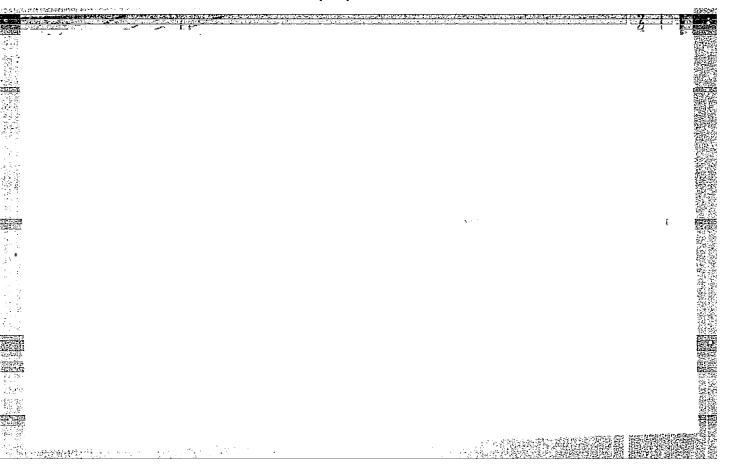
Periodical

Dok. AN SSSR 100/1, 97-100, Jan 1, 1955

Abstract

Experiments show that the maximum possible deuterium distribution coefficient should occur during isotopic hydrogen exchange between the hydride of the most heavy alkali metal and one of the non-metal compounds of the first period. The equilibrium constant of the interchange reaction depends upon the nature of the statistical deuterium distribution between the reacting molecules and upon the various degree of hetero-dynamism of the

The L. Ya. Karpov Scientific Research Phys-Chemical Institute Institution :


Presented by: Academician V. A. Kargin, July 27, 1954

Periodical: Dok. AN SSSR 100/1, 97-100, Jan 1, 1955

Card 2/2: Pub. 22 - 25/50

Abstract: hydrogen isotopes in the molecules of both substances. It was established that the very same deuterium distribution rules pertain also to tritium as well as isotopes of other monovalent elements except that the distribution effects will be different. Five references: 4

USSR and 1 USA (1947-1954). Tables; diagram.

SBERG, SIE.

AUTHORS:

Varshavskiy, Ya. M., and Vaysberg, S. E., (Moscow).

TITLE:

Thermodynamic and Kinetic Peculiarities of the Isotope-Exchange-Reaction of Hydrogen (Termodinamicheskiye i kineticheskiye osobennosti reaktsii izotopnogo obmena vodoroda).

PERIODICAL:

Uspekhi Khimii, 1957, Vol. 26, Nr 12, pp. 1434-1468 (USSR).

ABSTRACT:

Deuterium is of particularly great importance especially in organic chemistry, because it makes it possible to determine the way taken by hydrogen in chemical reactions by means of marked atoms. The ex= change velocity can serve as a criterion for the structure and the preparedness of reaction of various substances. The article compris ses the most important research results in the field of the thermodynamics and kinetics of the isotope exchange reaction of hydrogen; in this connection also general rules governing isotope exchange reaction are derived. The following chapters are dealt with:

The thermodynamics of isotope exchange. I)

The connection between the distribution coefficient of isotopes a) and the equilibrium constant of the isotope exchange reaction.

Methods for the statistical computation of equilibrium in iso=

tope exchange.

Card 1/2

Rules governing the deuterium distribution in the isotope ex=

Thermodynamic and Kinetic Peculiarities of the Isotope-Exchange- 74-12-4/18 Reaction of Hydrogen.

change of hydrogen.

- d) Experimental data concerning the distribution of the equilibrium of deuterium in isotope exchange reactions of hydrogen.
- II) Some details concerning the reaction kinetics of isotope exchange:
- a) General problems,
- b) On the kinetic equation of the isotope reaction.
- c) Limits of the applicability of the kinetic equation of first order.

There are 2 figures, 5 tables, and 76 references, 36 of which are Slavic.

AVAILABLE:

Library of Congress.

1. Hydrogen-Reaction 2. Isotope exchange-Thermodynamics

Card 2/2

USCOMM-DC-54784

AUTHORS:

Varshavskiy, Ya. H., Vaysberg, S. E.

76-32**-**2-32/38

TITLE:

On the Limits of Applicability of the First Order Kinetic

Equation for Isotopic Exchange Reactions

(O granitsakh primenimosti kineticheskogo uravneniya pervogo

poryadka dlya reaktsiy izotopnogo obmena)

PERIODICAL:

Zhurnal Fizicheskoy Khimii, 1958, Vol. 32, Mr 2, pp. 454-459

(USSR).

المنافعة وأفروره

ABSTRACT:

The authors investigate the problem concerning the limits of applicability of first order equations for reactions of isotopic exchange in dependence upon the degree of deviation of the quantity a (distribution coefficient of isotopes) from unity. The investigation is carried out with the example of a bimcle-cular reaction where any dissociation reaction intendedly is expressed by a first order equation (as its velocity is limited by the dissocolation of a component), the greatest part of the association reaction, however, apparently still is bimolecular. The kinetic equation for the reaction of isotopic exchange (taking place according to bimolecular mechanism) is deduced. It is shown

that this equation is one of second order and practically becomes

Card 1/3

On the Limits of Applicability of the First Order Kinetic Equation for Isotopic Exchange Reactions

76-32-2-32/38

a first order equation only on certain conditions. For this, one of the following three conditions is sufficient: 1. - When the coefficient of equilibrium distribu tion of the isotopes is close to unity. 2. - A small concentration of that component in which the accumulation of the respective isotope is measured. 3. - Small concentration of that isotope in the system the accumulation of which is measured in the respective component. It is shown that the deviation of the velocity constant of the bimolecular reaction in the isotopic exchange continuously increases from the velocity constant calculated according to the first order equation with the increase of the exchange proportion, and that it tends towards a certain maximum. This maximum is not greater than twice the mini= mum value corresponding to the beginning of the exchange. For a number of values of the isotopic distribution coefficient the corresponding maximum deviations are calculated which practi= cally can occur within the range of the concentration changes of the component and of the isotopes. The extent of this deviation makes it possible to estimate the degree of non-conformity between the velocity constant and the kinetic equation of first order and to determine the limits of applicability of this equation,

Card 2/3

On the Limits of Applicability of the First Order Kinetic Equation for Isotopic Exchange Reactions

76-32-2-32/38

There are 2 figures, and 12 references, 5 of which are Soviet.

ASSOCIATION: Physico - chemical Institute imeni L. Ya. Karpov, Moscow

(Fiziko-khimicheskiy institut im. L. Ya. Karpova, Hoskva)

SUBMITTED: April 15, 1957.

1. Exchange reactions--Mathematical analysis

Card 3/3

5(4) AUTHORS:

Varshavskiy, Ya. M., Vaysberg, S. E., SOV/20-122-5-23/56 Trubitsyn, B. A.

TITLE:

The Equilibrium Distribution of Deuterium in Hydrogen Exchange With Liquid Hydrogen Chloride (Ravnovesnoye raspredeleniye deyteriya pri vodorodnom obmene s

zhidkim khloristym vodorodom)

PERIODICAL:

Doklady Ahademii mank SDSR, 1958, Vol 122, Nr 5,

pp 031 - 833 (USSR)

ADSTRACT:

The present paper deals with the first investigation of the deuterium exchange in liquid hydrogen chloride;

the isotope-equilibria in several systems which contain hydrogen chloride are investigated. Some earlier papers are first discussed. It was of importance, above all, to obtain a reliable value of the distribution coefficient α of the deuterium for the isotopic equilibrium between hydrogen chloride and the aromatic C-H-bond and to compare its value with that of α for the case of an O-H bond and an

Card 1/3

aliphatic C-H bond. Knowledge of these quantities

The Equilibrium Distribution of Deuterium in Hydrogen 507/20-122-5-25/58 Exchange With Liquid Hydrogen Chloride

is of importance also for the investigation of deuteron exchange with liquid hydrogen chloride at present being carried out by the authors. The cuthors investigated the equilibrium distribution between hydrogen chloride and bennene, cyclopentane, and also water. These investigations were carried out on liquid-phase systems under pressure. After the establishment of equilibrium, the liquid hydrogen was vaporized and the water obtained by neutralization was then investigated with respect to its deuterium content. The carrying out of measurements is discussed in short. In isotope-exchange, equilibrium was attained from both sides by carrying out experiments with direct and inverse exchange. The tests concerning icotope exchange in hydrocarbons were carried out with an aluminum-chloride catalysis. The data thus obtained are compiled in a table. They permit the following conclusion to be drawn: At one and the same temperature the values obtained for the isotope

Card 2/3

The Equilibrium Distribution of Deuterium in Hydrogen 507/20-122-5-25/56 Exchange With Liquid Hydrogen Chloride

> exchange of hydrogen chloride with compounds containing an O-H bond and also an arcmatic or aliphatic O-H bond are found to agree in practice. The hydrogen exchange (in the presence of AlCl_x) between liquid hydrogen chloride and a saturated hydrocarbon that contains no third carbon atom is of special interest. Liquid hydrogen chloride is suited for the investigation of the suitability of organic compounds for the reactions of electrophile substitution by the method of deuteron exchange. There are 1 figure and 12 references, 9 of which are Soviet.

ASSOCIATION:

Fiziko-khimicheskiy institut im.L.Ya.Karpova (Physico-

Chemical Institute imeni L.Ya.Karpov)

PRESENTED:

June 9, 1958, by V.A.Kargin, Academician

SUBMITTED:

June 9, 1950

Card 3/3

SAVIN, A.G.; VAYSBERG, S.E.; KARPOV, V.L.; TIKHOMIROVA, N.S.

Diffusion of gases in polymers being subjected to ionizing radiation, Vysokom, soed. 7 no.8:1427-1429 Ag 165. (MIRA 18:9)

1. Fiziko-khimicheskiy institut imeni L.Ya.Kerpova AN SSSR, Moskva.

VAYSBERG, S.E.; VARSHAVSKIY, Ya.M.

Dual-temperature hydrogen isotope exchange between a gas-vapor mixture and a solution of the gas. Zhur.fiz.khim. 37 no.1:87-93 Ja '63. (MIRA 17:3)

1. Fiziko-khimicheskiy institut imeni L.Ya.Karpova.

VAYSBERG, S.E.; VARSHAVSKIY, Ya.M.

Di-temperature deuterium exchange in the system water-hydrogen chloride. Zhur.fiz.khim. 37 no.2:307-309 F 763. (MIRA 16:5)

1. Fiziko-khimicheskiy institut imeni L.Ya. Karpova. (Hydrochloric acid) (Water) (Deuterium)

29825 \$/020/61/140/006/024/030 B107/B101

5.2430

AUTHORS: Varshavskiy, Ya. M., and Vaysberg, S. E.

TITLE:

Equilibrium distribution of tritium in isotopic exchange of

hydrogen

PERIODICAL: Akademiya nauk SSSR. Doklady, v. 140, no. 6, 1961, 1361-1363

TEXT: Data for calculating the equilibrium constants and the distribution ratio protium - tritium by the method by Urey (Ref. 1, see below), Bigeleisen - Mayer (Ref. 2, see below) and V. M. Tatevskiy (ZhFKh, 25, 261 (1951)) are not available up to date. The present work gives a method for calculating roughly the distribution ratio protium - tritium by means of the so-called \$\beta\$ factors. These \$\beta\$ factors (Ya. M. Varshavskiy, S. E. Vaysberg, Usp. khim., 29, 1434 (1957)) are a quantitative measure for the thermodynamic inequality of two isotopes of an element in a certain substance. In first approximation, they depend only on the number of outside electrons and occupied electron shells. Thus the β factors of CH_4 , NH_3 , and H_2O are all about equal to the eta-factor of HF. The eta factors for the tritium - protium exchange in diatomic hydrides (including free radicals) may be calculated Card 1/5/2_

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6" 29825

Equilibrium distribution of ...

S/020/61/140/006/024/030 B107/B101

from the vibration frequencies of the hydride (ν_H) and the tritide (ν_T) : $\beta = (\nu_T/\nu_H) \left\{ \left[1 - \exp(hc\nu_H/kT) \right] / \left[1 - \exp(-hc\nu_T/kT) \right] \right\} \exp\left[(-hc/2kT) (\nu_H - \nu_T) \right]$. The β factors for the tritium - protium exchange at 20°C are listed in Table 1 and represented as function of the atomic number in Fig. 1. Table 2 gives the calculated distribution ratios at 20°C. $(\alpha = \beta_1/\beta_2)$. There are 1 figure, 2 tables, and 9 references: 6 Soviet and 3 non-Soviet. The three references to English-language publications read as follows: Ref.1: H. C. Urey, J. Chem. Soc., 1947, 562; Ref.2: J. Bigeleisen, M. Mayer, J. Chem. Phys., 15, 261 (1947); Ref. 8: P. Stats, H. Morgan, J. Goldstein, J. Chem. Phys., 24, 916 (1956).

ASSOCIATION: Institut radiatsionnoy i fiziko-khimicheskoy biologii Akademii nauk SSSR (Institute of Radiation- and Physicochemical Biology

of the Academy of Sciences USSR)

PRESENTED: May 23, 1961, by A. N. Frumkin, Academician

SUBMITTED: May 23, 1961 Card 2/8 2

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

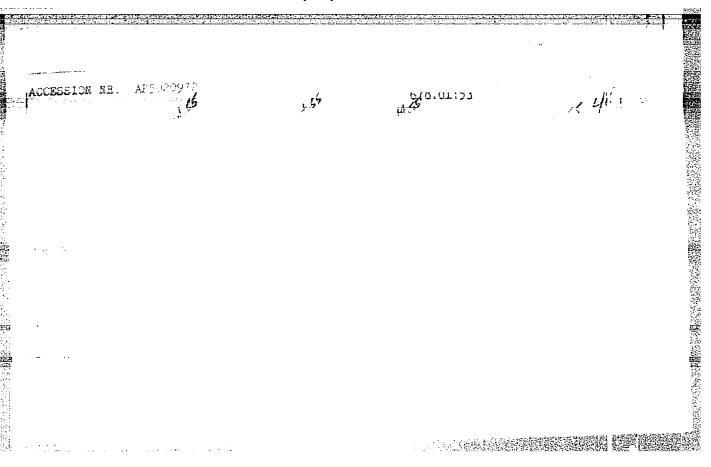
VARSHAVSKIY, Ya.M., doktor khimicheskikh nauk; VAYSBERG, S.E., kand. khimicheskikh nauk

Present-day methods for producing heavy water. Khim.nauka i prom.

(MIRA 13:8)

4 m.4:498-509 159.

(Deuterium oxide)


PAIRTSKIY, G.V.; DANCHENKO, B.K.; CHERNYAYEV, A.F.; ZAGRANICHNOV, G.A.;

VAYSHEG, S.E.; YERISKIN, K.I.

Decreasing the distance between electrodes in electrolyzers.

From.energ. 15 no.3:20 Mr '60. (MIRA 13:6)

(Electrolysis) (Hydrogen)

BAKLAYEV, Ya.P.; OVCHINNIKOV, L.N., prof., doktor geol.-min.nauk, otv. red.; VAYSBERG, S.I., red.; IZMODEHOVA, L.A., tekhn.red.

[Geology and potential of the Tur'insk contact-metasomatic deposits of copper in the northern Urals] Geologicheskoe stronie i perspektivy Tur'inskikh kontaktovo-metasomaticheskikh mestorozhdenii medi na severnom Urale. Sverslovsk, 1959. 141 p. (Akademiia nauk SSSR. Ural'skii filial. Sverdlovsk. Gornogeologicheskii institut. Trudy, no.37) (MIRA 13:2) (Tur'insk region-geology)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

s/076/63/037/002/006/018 B101/B186

AUTHORS:

Varshavskiy, Ya. M. (Moscow)

TITLE:

Investigation of the two-temperature exchange of deuterium in the system water - hydrogen chloride

Zhurnal fizicheskoy khimii, v. 37, no. 2, 1963, 307-309

PERIODICAL:

TEXT: It was sought to determine efficiency of two-temperature columns, which is important for the concentration of deuterium, and to compare it with that of rectification. For this purpose, di-temperature isotopic separation of hydrogen was effected in counter-current columns in the system hydrochloric acid - gas-vapor mixture of hydrogen chloride and water. The deuterium content of the water was 0.65 at%, that of the hydrochloric acid 0.61 ati. Results: The two-component state of the phases may lead to a shift in the enrichment peak to beyond the current ratio A, equal to the partition factor α of deuterium. Maximum enrichment in the given system at column temperatures of t = 17°C and t' = 90°C corresponded to $\lambda = 2.7-2.9$, whereas α_{17}° C = 2.53. The ratio ψ between the HET on rectification of water and the HET on di-temperature isotopic exchange has Card 1/2

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

Investigation of the two-temperature ...

S/076/63/037/002/006/018 B101/B186

been found equal to 0.4. There are 1 figure and 1 table.

ASSOCIATION:

Fiziko-khimicheskiy institut im. L. Ya. Karpova

(Physicochemical Institute imeni L. Ya. Karpov)

SUBMITTED:

August 17, 1961

Card 2/2

BICHKOVA, K.I. [Bychkova, K.I.], kand.med.nauk; VAYSBERG, S.Ya. [Vaisberh, S.IA.], kand.med.nauk

Functional changes under the influence of antiallergic actions in hemorrhagic syndromes in children. Ped., akush. i gin. 23 no.6: 31 161. (MIRA 15:4)

1. Kafedra pediatrii Donetskogo meditsinskogo instituta. (HEMOPHILIA)

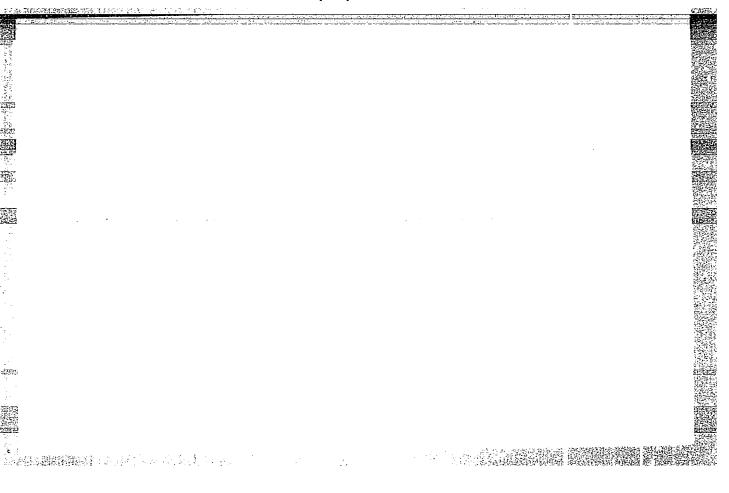
eritaria.	ş - • ∴ ∴ ∴		•							• •	
AUTHOR: UkrSGR);	Bazelyø Vayeber	n L	<u>L</u> .;	Braude Krymkin	<u>. S. Y</u> а.	(Corre	espon ', Ą,	ding	member Sodin,	AN L. C.	
· ·	• • • •										
· · · · · · · · · · · · · · · · · · ·				٠.							
											٠
Cara 1/2											

ACCECCIAN No. Aprilia.

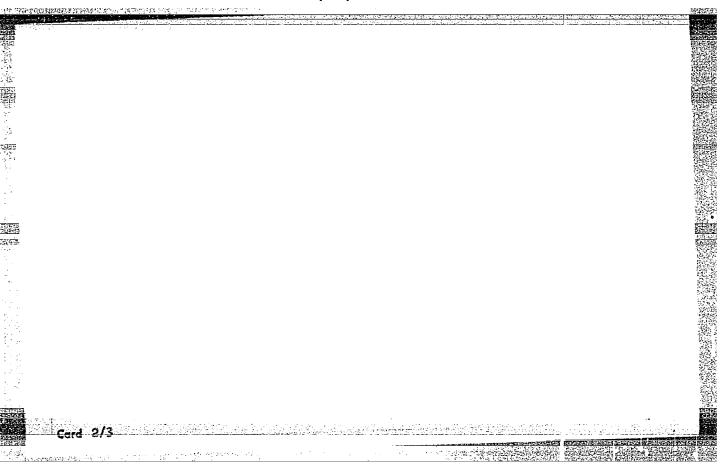
Signal reception. ratistic form each vice eleas percented simultaneel was percented and interest vice. An each percented and interest v

BRAUDE, S. Ya.; VAYBBURG, V.V.

Distribution of thermal and nonthermal radiation components over the galactic disc. Izv. vys. ucheb. zav. radiofiz. 7 no.2:193-101 '64 (NIRA 18:1)


1. Institut radiofiziki i elektroniki AN UkrSSR.

PRINTING L.I., DEADE C.Tall PROPERTY V.V. ARTHERN, V.V., MENT, C.V. SCDIN 1.2.


Chuny of the apecta of district cosmic serie estates macros of frequencies below 10 Mc. Fairon, phus. A2 mc. ph. 12.628 My 16 165.

(MIRA 1815)

1. Smatthed radiofiziki i elektrociki in Varian.

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

L 58385-65 FBD/EWT(1)/F-3(y)/FSC_1/2-014) - 100_5/2-3-1/2-1 - 3/6-1

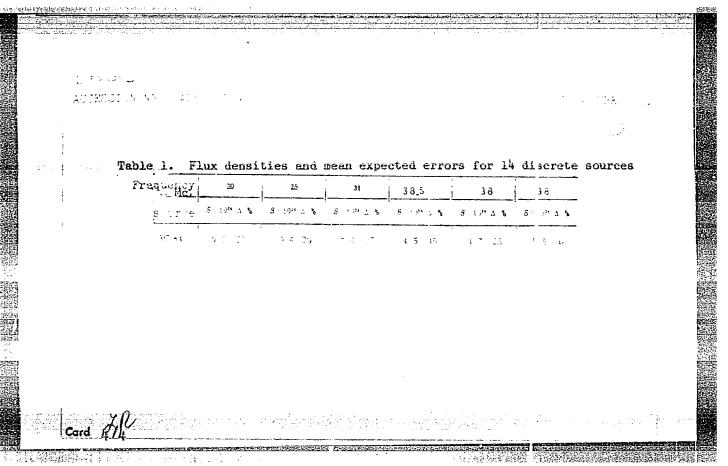
AUTHOR: bazelyar, D. L., braude, J. fa., vayaberg, V. V., Krymkin, Ment, A. V.; Sodin, L. G.

TITLE: Investigation of the spectra of discrete cosmic radio emission sources at frequencies below $\frac{40~{\rm Me}_{\rm d}}{}$

SOURCE: Astronomicheskiy zhurnal, v. 42, no. 3, 1965, 618-628

TOPIC TAGS: cosmic radio emission radio emission source, radio emission measurement, radio belession

ABSTRACT: The spectra of 14 discrete sources (in the 20-40-Mc range) were investigated at the Fall. Astronomy coercian to the institute of Fall convers


.470 m apart on an east-west line. Each array consisted of 178 horizontal dipoles. Pattern width was 4° for 20 Mc and 2° for 40 Mc. Lobe width of the interference

Card 1/1

L 58385-65 ACCESSION NR: AP5015584	
pattern was 1.6° for 20 Mc and 0.8° for 40 Mc. Beam	
was regulated by remote-control delay lines. The tele	
modulated by phase addring the signal form of the ar	
frequency of ou cps. Ine signals of each antenna were The passband of the presmplifiers and of the passe shi	fter was about 20 Mo. The
A Company of the comp	
At the profession with the contract of the con	$(v_1,v_2,\dots,v_n) = (v_n,v_n) + (v_n,v_n) $
were calibrated with a staniant-stank, generally lead	ormuko a dalimanen attenuator
and a polition to the inseauch fler induty of suctions.	or eg were de 20etion - ma
	. •
and the second of the second o	
្សីស្រី ក្រុម ស្រ្គាមមាន ស៊ី ស្រែម ខាល់ស្រាមស្រះសម្រាប់ ស្រែង ខាង ខេង ។ ប្រាក្សា និង ខេង ខេង ខេង ខេង ខេង ខេង ខ ប្រជាព្រះ	n the Boursele of the
a constant spectral index from 20 to 1400—3200 Mc (1, a spectral index which is a function of the frequency 3 figures and 2 tables.	
ASSOCIATION: Institut radiofiziki i elektroniki Akade of Radio Physics and Electropics, Anademy of spiemes	
Card 2/4	

L 58385-65 ACCESSION NR: AP5015584			0
Asset of the second		715 775 A 5 7	• ./
भूत व्याप २०४ - ^{१९} ५	v.ar:	ATTURNAS AUAC	
·			
		esite in misseman se o o o o o o o o o o o o o o o	o y in order and another decorations
		ginga pigaga di binasala maa wa. Balaa maa galaa wa Balaa di waxa wa	
Card 3/4			

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001859120018-6"

VAYSBERG, Ya.D.

17年的計算數學權等的12月1

Horizontal spaces between underground utility installations. Stroi. truboprov. 8 no.3:15-17 Mr '63. (MIRA 16:5)

"Excupação

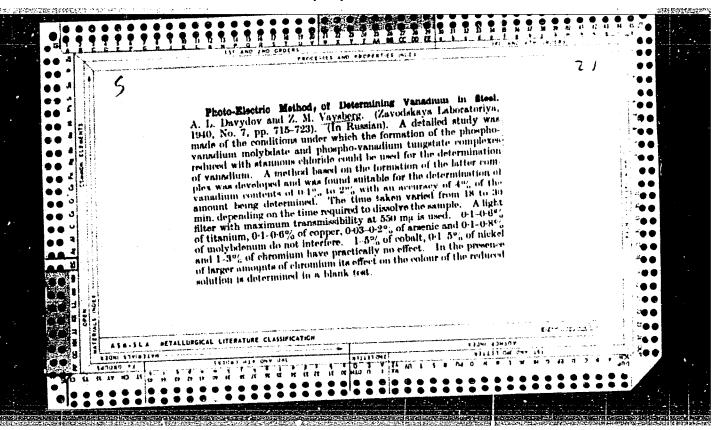
. 1964

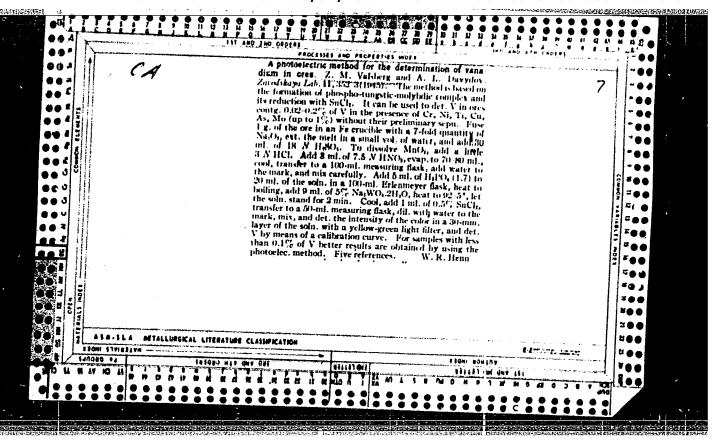
1. Nachalinik tekhnicheskogo otdela instituta Lengiproinzhproyekt, Leningrad. (Pipelines)

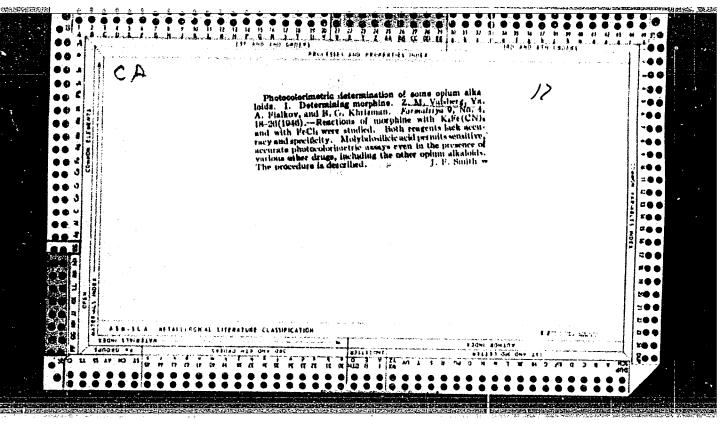
COCCESÃ

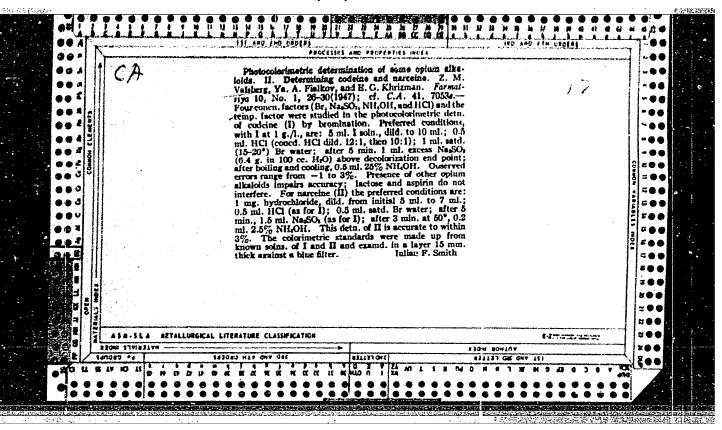
C. 1361

YAKOVLEV, A.T.; VAYSBERG, Ya.D.; GORSHKOV, V.A., red.


[Designing city gas mains] Proektirovanie gorodskikh gazoprovodov. Moskva, Izd-ve M-va kommun.khoz. RSFSR, 1963. 163 p. (MIRA 17:6)


VAYSBERG, Ya.D. [deceased]


Giving up the hydraulic testing of gas pipelines after their placement on supports. Stroi. truboprov. 9 no.6:36-37 Je '64.


(MERA 17:12)

1. Lengiproinzhproyekt, Leningrad.

